PROJ ECTIONS OF STRAIGHT LINES.

INFORMATION REGARDING A LINE means
IT'S LENGTH, POSITION OF IT'S ENDS WITH HP \& VP IT'S INCLINATIONS WITH HP \& VP WILL BE GIVEN.

SIMPLE CASES OF THE LINE

1. A VERTICAL LINE (LINE PERPENDICULAR TO HP \& // TO VP)
2. LINE PARALLEL TO BOTH HP \& VP.
3. LINE INCLINED TO HP \& PARALLEL TO VP.
4. LINE INCLINED TO VP \& PARALLEL TO HP.
5. LINE INCLINED TO BOTH HP \& VP.

STUDY ILLUSTRATIONS GIVEN ON NEXT PAGE
 OF LINES LISTED ABOVE AND NOTE RESULTS.

Orthographic Projections Means Fv \& Tv of Line AB are shown below,
with their apparent Inclinations $\alpha \& \beta$

Here TV (ab) is not // to XY line Hence it's corresponding FV
$a^{\prime} b^{\prime}$ is not showing True Length \&
True Inclination with Hp.

Note the procedure
When Fv \& Tv known,
How to find True Length.
(Views are rotated to determine
True Length \& it's inclinations
with Hp \& Vp).

In this sketch, TV is rotated and made // to XY line.
Hence it's corresponding FV $a^{\prime} b_{1}^{\prime}$ Is showing

True Length \&

True Inclination with Hp.

Note the procedure
When True Length is known, How to locate Fv \& Tv.
(Component a-1 of TL is drawn which is further rotated to determine Fv)

Here $a-1$ is component of $T L a b_{1}$ gives length of Fv. Hence it is brought Up to Locus of a^{\prime} and further rotated to get point b^{\prime}. $a^{\prime} b^{\prime}$ will be Fv.

Similarly drawing component of other $\operatorname{TL}\left(a^{\prime} b_{1}{ }^{\prime}\right)$ Tv can be drawn.

The most important diagram showing graphical relations among all important parameters of this topic. Study and memorize it as a CIRCUIT DIAGRAM And use in solving various problems.

1) True Length (TL) - $a^{\prime} b_{1}^{\prime} \& a b$
2) Angle of $T L$ with Hp -
3) Angle of TL with $V p-$
4) Angle of FV with $x y$ α
5) Angle of TV with $x y$ -

6) LTV (length of FV) - Component (a-1)
7) LFV (length of TV) - Component (a' a^{\prime})
8) Position of A- Distances of a \& a' from xy
9) Position of B- Distances of $b \& b^{\prime}$ from $x y$
10) Distance between End Projectors

\& it is further rotated to locate view.
Views are always rotated, made horizontal \& further extendedte

GROUP (A)

GENERAL CASES OF THE LINE INCLINED TO BOTH HP \& VP

PROBLEM 1)

Line $A B$ is 75 mm long and it is 30° \& 40° Inclined to $\mathrm{Hp} \& \mathrm{Vp}$ respectively. End A is 12 mm above Hp and 10 mm in front of V p.
Draw projections. Line is in $1^{\text {st }}$ quadrant.

SOLUTION STEPS:

1) Draw $x y$ line and one projector.
2) Locate a' 12 mm above xy line \& a 10 mm below $x y$ line.
3) Take 30° angle from a' \& 40° from a and mark TL I.e. 75 mm on both lines. Name those points $b_{1}{ }^{\prime}$ and b_{1} respectively.
4) Join both points with a' and a resp.
5) Draw horizontal lines (Locus) from both points.
6) Draw horizontal component of TL
a b_{1} from point b_{1} and name it 1 .
(the length a-1 gives length of Fv as we have seen already.)
7) Extend it up to locus of a' and rotating a' as center locate b^{\prime} as shown. Join a^{\prime} b^{\prime} as Fv.
8) From b' drop a projector down ward \& get point b. Join a \& b l.e. Tv.
(based on 10 parameters).

PROBLEM 2:

Line AB 75mm long makes 45° inclination with Vp while it's Fv makes 55°.
End A is 10 mm above Hp and 15 mm in front of Vp .If line is in $1^{\text {st }}$ quadrant
draw it's projections and find it's inclination with Hp.

Solution Steps:-

1.Draw x-y line.
2.Draw one projector for $a^{\prime} \& a$
3.Locate $a^{\prime} 10 \mathrm{~mm}$ above $\mathrm{x}-\mathrm{y}$ \&

Tv a 15 mm below xy .
4.Draw a line 45° inclined to xy from point a and cut TL 75 mm on it and name that point b_{1} Draw locus from point b_{1}
5.Take 55° angle from a^{\prime} for Fv above xy line.
6.Draw a vertical line from b_{1} up to locus of a and name it 1 . It is horizontal component of TL \& is LFV.
7.Continue it to locus of a^{\prime} and rotate upward up to the line of Fv and name it b^{\prime}.This $a^{\prime} b^{\prime}$ line is Fv .
8. Drop a projector from b^{\prime} on locus from point b_{1} and name intersecting point b. Line $a b$ is Tv of line AB.
9.Draw locus from b^{\prime} and from a^{\prime} with TL distance cut point $b_{1}{ }^{\prime}$ 10.Join $a^{\prime} b_{1}{ }^{\prime}$ as TL and measure it's angle at a^{\prime}.
It will be true angle of line with HP.

PROBLEM 3:

Fv of
line $A B$ is 50° inclined to $x y$ and measures 55 mm long while it's Tv is 60° inclined to $x y$ line. If end A is 10 mm above Hp and 15 mm in front of $V p$, draw it's projections, find TL, inclinations of line with Hp \& Vp.

SOLUTION STEPS:

1.Draw xy line and one projector.
2. Locate a' 10 mm above xy and
a 15 mm below $x y$ line.
3. Draw locus from these points.
4.Draw $\mathrm{Fv} 50^{\circ}$ to xy from a' and mark b' Cutting 55 mm on it.
5.Similarly draw Tv 60° to $x y$
from a \& drawing projector from b'
Locate point b and join a b.
6.Then rotating views as shown, locate True Lengths $\mathrm{ab}_{1} \& \mathrm{a}^{\prime} \mathrm{b}_{1}{ }^{\prime}$ and their angles with Hp and V p.

PROBLEM 4 :-

Line $A B$ is 75 mm long . It's Fv and Tv measure 50 mm \& 60 mm long respectively. End A is 10 mm above Hp and 15 mm in front of V p. Draw projections of line $A B$ if end B is in first quadrant. Find angle with Hp and V p.

SOLUTION STEPS:

1.Draw xy line and one projector.
2. Locate a' 10 mm above xy and
a 15 mm below $x y$ line.
3.Draw locus from these points.
4.Cut 60 mm distance on locus of a' \& mark 1^{\prime} on it as it is LTV.
5.Similarly Similarly cut 50 mm on locus of a and mark point 1 as it is LFV.
6. From 1' draw a vertical line upward and from a' taking TL (75 mm) in compass, mark $b^{\prime}{ }_{1}$ point on it. Join a' b' ${ }_{1}$ points.
7. Draw locus from b_{1}^{\prime}
8. With same steps below get b_{1} point and draw also locus from it.
9. Now rotating one of the components I.e. $a-1$ locate b^{\prime} and join a^{\prime} with it to get Fv.
10. Locate tv similarly and measure
Angles
θ \& Φ

PROBLEM 5:-

T.V. of a 75 mm long Line CD, measures 50 mm .

End C is in Hp and 50 mm in front of Vp .
End D is 15 mm in front of Vp and it is above Hp .
Draw projections of $C D$ and find angles with Hp and Vp .

SOLUTION STEPS:
1.Draw xy line and one projector.
2. Locate c' on $x y$ and
c 50 mm below xy line.
3. Draw locus from these points.
4.Draw locus of d 15 mm below xy
5.Cut $50 \mathrm{~mm} \& 75 \mathrm{~mm}$ distances on locus of d from c and mark points $d \& d_{1}$ as these are Tv and line CD lengths resp.\& join both with c.
6. From d_{1} draw a vertical line upward up to xy l.e. up to locus of c^{\prime} and draw an arc as shown.
7 Then draw one projector from d to meet this arc in d' point \& join $c^{\prime} d^{\prime}$
8. Draw locus of d^{\prime} and cut 75 mm on it from c' as TL
9.Measure Angles
θ \& Φ $d^{\prime}{ }_{1}$ LOCUS OF $d^{\prime} \& d^{\prime}$

PROBLEMS INVOLVING TRACES OF THE LINE.

TRACES OF THE LINE:-

THESE ARE THE POINTS OF INTERSECTIONS OF A LINE (OR IT'S EXTENSION) WITH RESPECTIVE REFFERENCE PLANES.

A LINE ITSELF OR IT'S EXTENSION, WHERE EVER TOUCHES H.P., THAT POINT IS CALLED TRACE OF THE LINE ON H.P.(IT IS CALLED H.T.)
V.T.:- It is a point on $V p$.

Hence it is called $F v$ of a point in Vp .
Hence it's Tv comes on XY line.(Here onward named as V)
H.T.:-

It is a point on Hp.
Hence it is called Tv of a point in Hp.
Hence it's FV comes on XY line.(Here onward named as 'h')

STEPS TO LOCATE HT.

 (WHEN PROJECTIONS ARE GIVEN.)1. Begin with FV. Extend FV up to XY line.
2. Name this point \mathbf{h}^{\prime}
(as it is a Wv of a point in Hp)
3. Draw one projector from h'.
4. Now extend Tv to meet this projector. This point is HT

STEPS TO LOCATE VT.
 (WHEN PROJECTIONS ARE GIVEN.)

1. Begin with TV. Extend TV up to XY line.
2. Name this point \mathbf{V} (as it is a Tv of a point in Vp)
3. Draw one projector from v.
4. Now extend Fv to meet this projector. This point is VT

PROBLEM 6 :- Fv of line AB makes 45° angle with XY line and measures 60 mm .
Line's Tv makes 30^{0} with XY line. End A is 15 mm above Hp and it's VT is 10 mm below Hp. Draw projections of line AB,determine inclinations with Hp \& Vp and locate HT, VT.

SOLUTION STEPS:-

Draw xy line, one projector and locate fv a' 15 mm above xy.
Take 45° angle from a' and marking 60 mm on it locate point b^{\prime}.
 Draw locus of $\mathrm{VT}, 10 \mathrm{~mm}$ below xy \& extending Fv to this locus locate VT. as fv-h'-vt' lie on one st.line.
Draw projector from vt, locate von xy. From v take 30° angle downward as Tv and it's inclination can begin with v. Draw projector from b' and locate b I.e.Tv point. Now rotating views as usual TL and it's inclinations can be found.
Name extension of Fv , touching xy as h^{\prime} and below it, on extension of Tv, locate HT.

PROBLEM 7:
One end of line $A B$ is 10 mm above Hp and other end is 100 mm in-front of Vp .
It's Fv is 45° inclined to xy while it's HT \& VT are 45 mm and 30 mm below xy respectively.
Draw projections and find TL with it's inclinations with Hp \& VP.

SOLUTION STEPS:-
Draw xy line, one projector and locate a' 10 mm above xy.
Draw locus 100 mm below xy for points $\mathrm{b} \& \mathrm{~b}_{1}$
Draw loci for VT and HT, 30 mm \& 45 mm below xy respectively.
Take 45° angle from a' and extend that line backward to locate h^{\prime} and VT, \& Locate v on xy above VT.
Locate HT below h' as shown.
Then join $v-H T$ - and extend to get top view end b.
Draw projector upward and locate b' Make a b \& a'b' dark.

Now as usual rotating views find TL and it's inclinations.

